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The Gamma Ray Bursts Hubble diagram
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Abstract. Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have
recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter
dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three
different calibration methods based on the use of a fiducial ΛCDM model, on cosmographic
parameters and on the local regression on SNeIa to calibrate the scaling relations proposed
as an equivalent to the Phillips law to standardize GRBs finding any significant dependence.
We then investigate the evolution of these parameters with the redshift to obtain any statis-
tical improvement. Under this assumption, we then consider possible systematics effects on
the HDs introduced by the calibration method, the averaging procedure and the homogene-
ity of the sample arguing against any significant bias.

1. Introduction

The observational evidences accumulated in
the last years, from the anisotropy and po-
larization spectra of the cosmic microwave
background radiation (CMBR), the large scale
structure traced by galaxy redshift surveys, the
matter power spectrum with the imprints of
the Baryonic Acoustic Oscillations (BAO) and
the Hubble diagram of SNeIa, definitely sup-
port the cosmological picture of a spatially
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flat universe with a subcritical matter content
(ΩM ∼ 0.3) and undergoing a phase of ac-
celerated expansion. From a theorical point of
view, the problem today is the presence of too
many ideas, ranging from the classical cosmo-
logical constant to scalar fields and higher or-
der gravity theories all of them being more
or less able to fit the available data. As of-
ten in science, adding further data and push-
ing the observed Hubble diagram to higher
redshift, calling into cause the so energetic
Gamma Ray Burst (GRBs), is the best strat-
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egy to put order in this theoretical scenario.
We believe that the existence of many obser-
vationally motivated correlations, e.g. (Amati
et al. 2008), offers the intriguing possibility of
turning GRBs into standardizeable candles just
as SNeIa. Two main problems are actually still
to be fully addressed. First, all the correlations
have to be calibrated assuming a fiducial cos-
mological model to estimate the redshift de-
pendent quantities. As a consequence, the so
called circularity problem comes out and we
try to investigate if the different strategies pro-
posed to break it are viable solutions. On the
other hand, there is up to now no any definitive
understanding of the GRBs scaling relations so
that one cannot anticipate whether the calibra-
tion parameters are redshift dependent. We ad-
dress this question in a phenomenological way
adopting different parameterizations.

2. GRBs scaling relations

To start, let us consider first the general case
of two observable quantities (x, y) related by a
power - law relation which, in a log - log plane,
reads

log y = a log x + b . (1)

Calibrating such a relation means determining
the slope a, the zeropoint b and the scatter σint
of the points around the best fit relation. Setting
y = κd2

L(z) with κ a directly measurable red-
shift independent quantity and dL(z) the lumi-
nosity distance, one can then estimate the dis-
tance modulus as :

µ(z) = 25 + 5 log dL(z)
= 25 + (5/2)(a log x + b − log κ) (2)

In order to perform such an estimate, one
has to select a sample of low redshift (z ≤ 0.01)
objects with known distance and fit the scal-
ing relation to infer the calibration parameters
(a, b, σint). Then, one has to assume that such
calibration parameters do not change with the
redshift so that a measurement of (x, κ, z) and
the use of the above scaling relation are suf-
ficient to infer the distance modulus. This ap-
proach, in principle, can be adopted for long
and short GRBs (Capozziello et al. 2011).

2.1. 2D empirical correlations

We limit here our attention only to two dimen-
sional (hereafter, 2D) correlations since they
can be investigated relying on a larger number
of GRBs. These involve a wide range of GRBs
properties related to both the energy spectrum
and the light curve which are correlated with
the isotropic luminosity L or the emitted colli-
mation corrected energy Eγ. These last quanti-
ties depend on the luminosity distance dL(z) as
shown below:

L = 4πd2
L(z)Pbolo , (3)

Eγ = 4πd2
L(z)S boloFbeam(1 + z)−1 , (4)

where Pbolo and S bolo are the bolometric peak
flux and fluence, respectively, while Fbeam =
1− cos (θ jet) is the beaming factor with θ jet the
rest frame time of achromatic break in the af-
terglow light curve. The combination of x and y
gives rise to the different GRBs correlations we
will consider, namely the Eγ - Epeak (Ghirlanda
et al. 2004), the L - Epeak (Schaefer 2003),
L - τlag (Norris et al. 2000), L - τRT (Schaefer
2007) and L - V (Fenimore & Ramirez - Ruiz

2000).

2.2. Bayesian fitting procedure

Eq.(1) is a linear relation which can be fit-
ted to a given dataset (xi, yi) in order to de-
termine the two calibration parameters (a, b).
The above linear relations will be affected by
an intrinsic scatter σint which has to be de-
termined together with the calibration coeffi-
cients. To this aim, in the following we will
resort to a Bayesian motivated technique (D’
Agostini 2005), which, however, does not tell
us whether this model fits well or not the data.

In order to sample the parameter space, we
use a Markov Chain Monte Carlo (MCMC)
method running two parallel chains and using
the Gelman - Rubin (1992) test to check con-
vergence (Cardone et al. 2011).

2.3. GRBs luminosity distances

A preliminary step in the analysis of the 2D
correlations is the determination of the lumi-
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nosity L or the collimated energy Eγ entering
as Y variable in the X - Y scaling laws with
(X,Y) = (log x, log y). As shown in Eqs.(3) -
(4), one has to determine the GRBs luminosity
distance over a redshift range where the linear
Hubble law does not hold anymore. Different
strategies have been developed to tackle this
problem. The simplest one is to assume a fidu-
cial cosmological model and determine its pa-
rameters by fitting, e.g., the SNeIa Hubble di-
agram. The ΛCDM is usually adopted as fidu-
cial model thus setting :

E2(z) = ΩM(1 + z)3 + ΩΛ (5)

with ΩΛ = 1 − ΩM because of the spatial
flatness assumption. We determine the param-
eters (ΩM , h), using the Union2 SNeIa sam-
ple (Kowalski et al. 2008) to get (µobs

i , σµi )
for NS NeIa = 557 objects over the red-
shift range (0.015, 1.4) and set (ωobs

M , σωM ) =
(0.1356, 0.0034) for the matter physical den-
sity ωM = ΩMh2 and (h, σh) = (0.742, 0.036)
for the Hubble constant. The best fit values turn
out to be (ΩM , h) = (0.261, 0.722).

Although the ΛCDM model fits remark-
ably well the data, it is nevertheless worth
stressing that a different cosmological model
would give different values for dL(z) thus im-
pacting the estimate of the calibration param-
eters (a, σint). Looking for a model indepen-
dent approaches, we first resort to cosmogra-
phy, i.e., we expand the scale factor a(t) to
the fifth order and then consider the luminos-
ity distance as a function of the cosmographic
parameters (Capozziello & Izzo 2008; Izzo et
al 2009).

As a further step towards a fully model
independent estimate of the GRBs luminosity
distances, one can use SNeIa as distance in-
dicator based on the naive observations that a
GRBs at redshift z must have the same distance
modulus of SNeIa having the same redshift
(Capozziello & Izzo 2008). Interpolating the
SNeIa Hubble diagram gives the value of µ(z)
for a subset of the GRBs sample with z ≤ 1.4
which can then be used to calibrate the 2D cor-
relations (Kodama et al. 2008). Assuming that
this calibration is redshift independent, one can
build up the Hubble diagram at higher red-
shifts using the calibrated correlations for the

remaining GRBs in the sample. As in Cardone
et al 2009, we have used an approach based on
the local regression technique which combines
much of the simplicity of linear least squares
regression with the flexibility of nonlinear re-
gression.

3. Calibration parameters

While the X quantities are directly observed
for each GRB, the determination of Y (either
the luminosity L or the collimated energy Eγ)
needs for the object’s luminosity distance. The
three methods described above allows us to get
three different values for Y so that it is worth
investigating whether this has any significant
impact on the calibration parameters (a, b, σint)
for the correlations of interest. We will refer
hereafter to the three samples with the Y quan-
tities estimated using the luminosity distance
from the fiducial ΛCDM cosmological model,
the cosmographic parameters and the local re-
gression method as the F, C and LR samples,
respectively. As a general result, we find that
the fit is always quite good, with reduced χ2

values close to 1, in all the cases independently
of the 2D correlation considered and the dis-
tance estimate method adopted.

The best fit coefficients and the median val-
ues clearly show that the calibration based on
the fiducial ΛCDM model leads to steeper scal-
ing laws for the most of cases. On the con-
trary, shallower slopes are obtained using the
C or LR samples with the L - V relation as
unique exception. Although the differences in
the slopes are not statistically meaningful be-
cause of the large uncertainties, we find that
the change in the slope is not induced by the
different luminosity distances adopted.

4. Evolution with redshift

It is not clear whether the calibration param-
eters (a, b, σint) evolve with redshift or not. To
investigate this issue, we consider two different
possibilities for the evolution with z. First, we
consider the possibility that the slope is con-
stant, but the zeropoint is evolving. In particu-
lar, we assume :

y = B(1 + z)αxA −→ Y = α log (1 + z) + aX + b (6)



S. Capozziello: The Gamma Ray Bursts Hubble diagram 327

0 1 2 3 4 5

38

40

42

44

46

48

z

Μ

0 1 2 3 4 5

38

40

42

44

46

48

z

Μ

0 1 2 3 4 5

38

40

42

44

46

48

z

Μ

Fig. 1. GRBs Hubble diagrams (HDs) averaging
over the six 2D correlations. Three panels refer to
the HDs derived using the calibration based on the
fiducial ΛCDM model (left), the cosmographic pa-
rameters (right), and the local regression (down).

with (X,Y) = (log x, log y) and (a, b) =
(A, log b). Comparing the previous constraints,
we note that both the best fit and median values
of the slope parameter a are significantly shal-
lower than in the no evolution case. However,
the 68% confidence ranges typically overlap
quite well so that, from a statistical point of
view, such a result should not be overrated. As
such, we consider a most conservative option
to assume that the GRBs scaling relations ex-
plored here do not evolve with z.

As an alternative parametrization, we allow
for an evolution of the slope and not only the
zeropoint of the 2D correlations. We fit the data
using :

Y = (a0 + a1z)X + (b0 + b1z) , (7)

i.e., we are Taylor expanding to the first or-
der the unknown dependence of the slope and
zeropoint on the redshift. As a general result,
we find that the best fit parameters and the
median values of the evolutionary coefficients
(log a1, log b1) are typically quite small indi-
cating that the dependence of both the slope
and the zeropoint on the redshift is quite weak,
if present at all.

5. GRBs Hubble diagram

Once the calibration parameters for a given Y -
X correlation have been obtained, it is then
possible to estimate the distance modulus of

a given GRB from the measured value of X,
as shown in Eqs.(2), where (a, b) are the best
fit coefficients for the given Y - X correlation,
while κ = 4πPbolo, κ = 4πS boloFbeam/(1 + z)
and κ = 4πS bolo/(1 + z) for Y = L, Y = Eγ and
Eiso, respectively. It is then possible to both re-
duce the uncertainties and (partially) wash out
the hidden systematic errors by averaging over
the different correlations available for a given
GRB.

5.1. Impact of the calibration method

Fig. 1 shows the GRBs Hubble diagrams (here-
after, HDs) obtained averaging over the above
2D correlations and using the three different
calibration methods. The red solid line is the
expected µ(z) curve for the fiducial ΛCDM
model.

As a general remark, we find that, notwith-
standing the calibration method adopted, the
GRBs HDs reasonably follow the ΛCDM
curve although with a non-negligible scatter.
Quite surprisingly, the scatter is significantly
larger in the range 0.4 ≤ z ≤ 1.4 because of
a set of GRBs with µ(z) lying systematically
above the ΛCDM prediction. One should ar-
gue for a failure of the theoretical model, but
there are actually a set of points which are hard
to reconcile with any reasonable dark energy
model.

In order to compare the HDs from the three
different calibration methods, we consider the
values of ∆µ = µ f id(z) − µ(z) with µ f id(z) the
theoretically predicted distance modulus for
the fiducial ΛCDM model and then we con-
clude that the HDs, obtained by using different
calibration methods, are consistent with each
other within the uncertainties.

5.2. Impact of the averaging procedure

As yet stated above, averaging the µ values
from different correlations helps reducing the
total uncertainties and partially washes out the
systematics connected to each single scaling
relations.

As a first check, we compare the ∆µ values
obtained estimating µ using each single cor-
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relation. While the median values of ∆µ are
roughly comparable, both 〈∆µ〉 and (∆µ)rms are
definitely larger for the L - Epeak and L - V cor-
relations. Pending the question of which rela-
tion is physical, we can quantify the impact
of an incorrect assumption by evaluating again
the distance moduli excluding the L - V and L -
Epeak correlations.

5.3. Satellite dependence

The GRBs sample is made out by collecting
the data available in the literature so that the
final catalog is not homogenous at all. In or-
der to investigate whether this could have any
impact on the HD, we consider again the de-
viations from the fiducial ΛCDM model us-
ing only the 80 GRBs detected with the Swift
satellite. Somewhat surprisingly, we find larger
∆µ values independent of the calibration proce-
dure adopted.

6. Conclusions

GRBs have recently attracted a lot of attention
as promising candidates to expand the Hubble
diagram up to very high z.

As the Phillips law is the basic tool to stan-
dardize SNeIa, the hunt for a similar relation to
be used for GRBs has lead to different empiri-
cally motivated 2D scaling relations. However,
the lack of a local GRBs sample leads to the
so called circularity problem. In an attempt to
overcome this problem, we have here consid-
ered the impact on the scaling relations and
GRBs HD of three different methods to esti-
mate the luminosity distance, concluding that
they lead to consistent results. The Hubble di-
agrams averaging over the correlations consid-
ered is not affected by the choice of the cali-
bration method.

Once the calibration procedure has been
adopted, one has still to check whether a
redshift evolution of the GRBs scaling re-

lations is present or not. We have therefore
explored two different parameterizations con-
cluding that such an evolution is not statisti-
cally motivated and it can be neglected.

Assuming that no evolution is present, we
have finally checked that the derived Hubble
diagrams are not affected by systematics re-
lated to the choice of the calibration method,
the averaging procedure or the homogeneity of
the sample. As such, the GRBs HD could be
safely used as a tool to constrain cosmological
parameters.
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